1、传输线的特性阻抗
无限长传输线上各处的电压与电流的比值定义为传输线的特性阻抗,用Z0 表示。 同轴电缆的特性阻抗的计算公式为 :
Z0=〔60/√εr〕×Log ( D/d ) [ 欧]
式中:D 为同轴电缆外导体铜网内径;d 为同轴电缆芯线外径;εr为导体间绝缘介质的相对介电常数。通常Z0 = 50 欧 ,也有Z0 = 75 欧的。
由公式不难看出,馈线特性阻抗只与导体直径D和d以及导体间介质的介电常数εr有关,而与馈线长短、工作频率以及馈线终端所接负载阻抗无关
578俱樂部 發表在 痞客邦 留言(0) 人氣(185)
1.1 天线的输入阻抗 天 线的输入阻抗是天线馈电端输入电压与输入电流的比值。天线与馈线的连接,最佳情形是天线输入阻抗是纯电阻且等于馈线的特性阻抗,这时馈线终端没有功率反 射,馈线上没有驻波,天线的输入阻抗随频率的变化比较平缓。天线的匹配工作就是消除天线输入阻抗中的电抗分量,使电阻分量尽可能地接近馈线的特性阻抗。匹 配的优劣一般用四个参数来衡量即反射系数,行波系数,驻波比和回波损耗,四个参数之间有固定的数值关系,使用那一个纯出于习惯。在我们日常维护中,用的较 多的是驻波比和回波损耗。一般移动通信天线的输入阻抗为50Ω。
驻波比:它是行波系数的倒数,其值在1到无穷大之间。驻波比为1,表示完 全匹配;驻波比为无穷大表示全反射,完全失配。在移动通信系统中,一般要求驻波比小于1.5,但实际应用中VSWR应小于1.2。过大的驻波比会减小基站 的覆盖并造成系统内干扰加大,影响基站的服务性能。
回波损耗:它是反射系数绝对值的倒数,以分贝值表示。回波损耗的值在0dB的到无穷大之间,回波损耗越大表示匹配越差,回波损耗越大表示匹配越好。0表示全反射,无穷大表示完全匹配。在移动通信系统中,一般要求回波损耗大于14dB。
578俱樂部 發表在 痞客邦 留言(0) 人氣(67)

说过了底座的选择也要说说天线连接线(馈线)的问题,为了保证良好的通信质量每一部分的连接都很重要,最好能保证尽量少的转接头的使用。同时也要注意连接线的材质和粗细,一般的架设都用的是随支架搭配的线缆,但也有追求极致的朋友采用的是钻石的定长连接线。这样当然最好。
计算好连接线的长度也很重要,一般的四门轿车的连接电缆线大约用4米左右,这样基本能满足从前座到后行李箱连接的需求。如果是休闲车或是吉普车可能会稍长一些,在采购的时候一定要估算好用线的长度不要中间在加接接头降低信号的强度。
一切准备就绪好后就是选择一个好的架设位置了,天线在车上的架设位置可分为车的前引擎盖,车顶,和后行李箱。这几个不同的位置的架设在使用上都会有一定的 信号衰减,这是因为不同的架设方式,和利用车身作地网效应对信号的反射情况决定的。最理想的架设位置就是在车的正中部利用支架固定住。当然,如果是使用吸 盘的话效果也会不错。与此相比在车的尾部行李箱的位置上架设的话效果会稍差。当然也有特殊情况,大家可以根据不同的架设位置对自己的车载电台进行一下测 试,最好以实际测量的数据为准。
578俱樂部 發表在 痞客邦 留言(0) 人氣(91)
在电工学中我们已知道了由电容和电感元件可以组成谐振回路。其中串联谐振回路有以下特点:谐振时回路阻抗最小,且为纯电阻;电路中电流最大,并与电源电压同相……。 实际应用的天线,其导体本身就具有一定的电感量,它和大地间又存在着电容。对于收发信机来说,整个天线系统就像一个LC串联回路。构成天线的导 体的几何尺寸、天线与周围物体以及与地之间的距离等因素影响着它的电感、电容参数。收信天线对某一频率谐振时,这个频率的电磁波能使天线产生较大的感应电 流而使接受机能从众多的信号中很容易就“发现”它;发信天线对某一频率谐振时,发射机能使天线中的电流达到最大,当然信号也就能最有效地发射出去。
和LC谐振回路一样,当天线发生谐振时,它等效为一个纯电阻。这个电阻包含了天线的辐射电阻和损耗电阻两个部分。我们根据欧姆定律可以推断,当 电流一定的时候,辐射电阻越大,发射效率越高。辐射电阻的大小取决于天线的结构形式。损耗电阻是有害的,在实际制作中我们选择导电性能好、表面积尽可能大 的材料制作天线以求得到最小的损耗电阻。谐振时天线的电阻也就是天线的特性阻抗,这是使用天线时必须了解的一个重要参数。
众所周知,用以表征谐振回路特征的“幅度——频率”特性曲线形状有陡、缓之分,有的回路频率响应范围宽,有的则反之。天线也有同样的特征:有的 天线可用于比较宽的一个频段,有的则不行。业余通信使用的频率虽然包括了相当宽的范围,但就每个波段而言却都是很窄的,所以业余通信使用的天线大多选用频 带窄而效率高的天线。许多淘汰的军用通信机中配用的天线,如44m、22m双极式天线等,都不能谐振在业余频段上,对于发射功率不大的业余通信来说效果并 不好。
我们都有这样的经验:如果LC回路谐振频率不合要求,可以用改变电感或电容数值的方法进行调试。天线也一样,当天线谐振频率不对时,可以调整它 的尺寸。如果无法调整尺寸也可以给天线回路串联或者并联电感电容,这就是“天线调谐”。不过应该知道,这种办法虽然可以使整个回路总体上达到谐振,但天线 的效果却并不见得好。可以设想,如果我们继续加大附加的电感电容比例,缩小天线部分,最后不就成了一个名符其实的LC回路了吗?这时的“辐射电阻”极小, 能量只能在回路内交换吞吐,并不能被发射出去。
578俱樂部 發表在 痞客邦 留言(0) 人氣(353)
电压驻波比(VSWR)是射频技术中最常用的参数,用来衡量部件之间的匹配是否良好。当业余无线电爱好者进行联络时,当然首先会想到测量一下天线系统的驻波比是否接近1:1, 如果接近1:1,当然好。常常听到这样的问题:但如果不能达到1,会怎样呢?驻波比小到几,天线才算合格?为什么大小81这类老式的军用电台上没有驻波表?
578俱樂部 發表在 痞客邦 留言(0) 人氣(108)
|
| 阻抗匹配(Impedance matching)是微波电子学里的一部分,主要用于传输线上,来达至所有高频的微波信号皆能传至负载点的目的,不会有信号反射回来源点,从而提升能源效 益。 大体上,阻抗匹配有两种,一种是透过改变阻抗力(lumped-circuit matching),另一种则是调整传输线的波长(transmission line matching)。 要匹配一组线路,首先把负载点的阻抗值,除以传输线的特性阻抗值来归一化,然后把数值划在史密夫图表上。 改变阻抗力 把电容或电感与负载串联起来,即可增加或减少负载的阻抗值,在图表上的点会沿著代表实数电阻的圆圈走动。如果把电容或电感接地,首先图表上的点会以图中心 旋转180度,然后才沿电阻圈走动,再沿中心旋转180度。重覆以上方法直至电阻值变成1,即可直接把阻抗力变为零完成匹配。 调整传输线 由负载点至来源点加长传输线,在图表上的圆点会沿著图中心以逆时针方向走动,直至走到电阻值为1的圆圈上,即可加电容或电感把阻抗力调整为零,完成匹配 阻抗匹配则传输功率大,对于一个电源来讲,单它的内阻等于负载时,输出功率最大,此时阻抗匹配。最大功率传输定理,如果是高频的话,就是无反射波。对于普 通的宽频放大器,输出阻抗50Ω,功率传输电路中需要考虑阻抗匹配,可是如果信号波长远远大于电缆长度,即缆长可以忽略的话,就无须考虑阻抗匹配了。阻抗 匹配是指在能量传输时,要求负载阻抗要和传输线的特征阻抗相等,此时的传输不会产生反射,这表明所有能量都被负载吸收了.反之则在传输中有能量损失。高速 PCB布线时,为了防止信号的反射,要求是线路的阻抗为50欧姆。这是个大约的数字,一般规定同轴电缆基带50欧姆,频带75欧姆,对绞线则为 100欧姆,只是取个整而已,为了匹配方便. 阻抗从字面上看就与电阻不一样,其中只有一个阻字是相同的,而另一个抗字呢?简单地说,阻抗就是电阻加电抗,所以才叫阻抗;周延一点地说,阻抗就是电阻、 电容抗及电感抗在向量上的和。在直流电的世界中,物体对电流阻碍的作用叫做电阻,世界上所有的物质都有电阻,只是电阻值的大小差异而已。电阻小的物质称作 良导体,电阻很大的物质称作非导体,而最近在高科技领域中称的超导体,则是一种电阻值几近于零的东西。但是在交流电的领域中则除了电阻会阻碍电流以外,电 容及电感也会阻碍电流的流动,这种作用就称之为电抗,意即抵抗电流的作用。电容及电感的电抗分别称作电容抗及电感抗,简称容抗及感抗。它们的计量单位与电 阻一样是奥姆,而其值的大小则和交流电的频率有关系,频率愈高则容抗愈小感抗愈大,频率愈低则容抗愈大而感抗愈小。此外电容抗和电感抗还有相位角度的问 题,具有向量上的关系式,因此才会说:阻抗是电阻与电抗在向量上的和。 阻抗匹配是指负载阻抗与激励源内部阻抗互相适配,得到最大功率输出的一种工作状态。对于不同特性的电路,匹配条件是不一样的。 在纯电阻电路中,当负载电阻等于激励源内阻时,则输出功率为最大,这种工作状态称为匹配,否则称为失配。 当激励源内阻抗和负载阻抗含有电抗成份时,为使负载得到最大功率,负载阻抗与内阻必须满足共扼关系,即电阻成份相等,电抗成份只数值相等而符号相反。这种 匹配条件称为共扼匹配。 一.阻抗匹配的研究 在高速的设计中,阻抗的匹配与否关系到信号的质量优劣。阻抗匹配的技术可以说是丰富多样,但是在具体的系统中怎样才能比较合理的应用,需要衡量多个方面的 因素。例如我们在系统中设计中,很多采用的都是源段的串连匹配。对于什么情况下需要匹配,采用什么方式的匹配,为什么采用这种方式。 例如:差分的匹配多数采用终端的匹配;时钟采用源段匹配; 1、 串联终端匹配 串联终端匹配的理论出发点是在信号源端阻抗低于传输线特征阻抗的条件下,在信号的源端和传输线之间串接一个电阻R,使源端的输出阻抗与传输线的特征阻抗相 匹配,抑制从负载端反射回来的信号发生再次反射. 串联终端匹配后的信号传输具有以下特点: A 由于串联匹配电阻的作用,驱动信号传播时以其幅度的50%向负载端传播; B 信号在负载端的反射系数接近+1,因此反射信号的幅度接近原始信号幅度的50%。 C 反射信号与源端传播的信号叠加,使负载端接受到的信号与原始信号的幅度近似相同; D 负载端反射信号向源端传播,到达源端后被匹配电阻吸收;? E 反射信号到达源端后,源端驱动电流降为0,直到下一次信号传输。 相对并联匹配来说,串联匹配不要求信号驱动器具有很大的电流驱动能力。 选择串联终端匹配电阻值的原则很简单,就是要求匹配电阻值与驱动器的输出阻抗之和与传输线的特征阻抗相等。理想的信号驱动器的输出阻抗为零,实际的驱动器 总是有比较小的输出阻抗,而且在信号的电平发生变化时,输出阻抗可能不同。比如电源电压为+4.5V的CMOS驱动器,在低电平时典型的输出阻抗为 37Ω,在高电平时典型的输出阻抗为45Ω[4];TTL驱动器和CMOS驱动一样,其输出阻抗会随信号的电平大小变化而变化。因此,对TTL或CMOS 电路来说,不可能有十分正确的匹配电阻,只能折中考虑。 链状拓扑结构的信号网路不适合使用串联终端匹配,所有的负载必须接到传输线的末端。否则,接到传输线中间的负载接受到的波形就会象图3.2.5中C点的电 压波形一样。可以看出,有一段时间负载端信号幅度为原始信号幅度的一半。显然这时候信号处在不定逻辑状态,信号的噪声容限很低。 串联匹配是最常用的终端匹配方法。它的优点是功耗小,不会给驱动器带来额外的直流负载,也不会在信号和地之间引入额外的阻抗;而且只需要一个电阻元件。 2、 并联终端匹配 并联终端匹配的理论出发点是在信号源端阻抗很小的情况下,通过增加并联电阻使负载端输入阻抗与传输线的特征阻抗相匹配,达到消除负载端反射的目的。实现形 式分为单电阻和双电阻两种形式。 并联终端匹配后的信号传输具有以下特点: A 驱动信号近似以满幅度沿传输线传播; B 所有的反射都被匹配电阻吸收; C 负载端接受到的信号幅度与源端发送的信号幅度近似相同。 在实际的电路系统中,芯片的输入阻抗很高,因此对单电阻形式来说,负载端的并联电阻值必须与传输线的特征阻抗相近或相等。假定传输线的特征阻抗为50Ω, 则 R值为50Ω。如果信号的高电平为5V,则信号的静态电流将达到100mA。由于典型的TTL或CMOS电路的驱动能力很小,这种单电阻的并联匹配方式很 少出现在这些电路中。 双电阻形式的并联匹配,也被称作戴维南终端匹配,要求的电流驱动能力比单电阻形式小。这是因为两电阻的并联值与传输线的特征阻抗相匹配,每个电阻都比传输 线的特征阻抗大。考虑到芯片的驱动能力,两个电阻值的选择必须遵循三个原则: ⑴. 两电阻的并联值与传输线的特征阻抗相等; ⑵. 与电源连接的电阻值不能太小,以免信号为低电平时驱动电流过大; ⑶. 与地连接的电阻值不能太小,以免信号为高电平时驱动电流过大。 并联终端匹配优点是简单易行;显而易见的缺点是会带来直流功耗:单电阻方式的直流功耗与信号的占空比紧密相关?;双电阻方式则无论信号是高电平还是低电平 都有直流功耗。因而不适用于电池供电系统等对功耗要求高的系统。另外,单电阻方式由于驱动能力问题在一般的TTL、CMOS系统中没有应用,而双电阻方式 需要两个元件,这就对PCB的板面积提出了要求,因此不适合用于高密度印刷电路板。 当然还有:AC终端匹配; 基于二极管的电压钳位等匹配方式。 二 .将讯号的传输看成软管送水浇花 2.1 数位系统之多层板讯号线(Signal Line)中,当出现方波讯号的传输时,可将之假想成为软管(hose)送水浇花。一端于手握处加压使其射出水柱,另一端接在水龙头。当握管处所施压的力 道恰好,而让水柱的射程正确洒落在目标区时,则施与受两者皆欢而顺利完成使命,岂非一种得心应手的小小成就? 2.2 然而一旦用力过度水注射程太远,不但腾空越过目标浪费水资源,甚至还可能因强力水压无处宣泄,以致往来源反弹造成软管自龙头上的挣脱!不仅任务失败横生挫 折,而且还大捅纰漏满脸豆花呢! 2.3 反之,当握处之挤压不足以致射程太近者,则照样得不到想要的结果。过犹不及皆非所欲,唯有恰到好处才能正中下怀皆大欢喜。 2.4 上述简单的生活细节,正可用以说明方波(Square Wave)讯号(Signal)在多层板传输线(Transmission Line,系由讯号线、介质层、及接地层三者所共同组成)中所进行的快速传送。此时可将传输线(常见者有同轴电缆Coaxial Cable,与微带线Microstrip Line或带线Strip Line等)看成软管,而握管处所施加的压力,就好比板面上“接受端”(Receiver)元件所并联到Gnd的电阻器一般,可用以调节其终点的特性阻抗 (Characteristic Impedance),使匹配接受端元件内部的需求。 三. 传输线之终端控管技术(Termination) 3.1 由上可知当“讯号”在传输线中飞驰旅行而到达终点,欲进入接受元件(如CPU或Meomery等大小不同的IC)中工作时,则该讯号线本身所具备的“特性 阻抗”,必须要与终端元件内部的电子阻抗相互匹配才行,如此才不致任务失败白忙一场。用术语说就是正确执行指令,减少杂讯干扰,避免错误动作”。一旦彼此 未能匹配时,则必将会有少许能量回头朝向“发送端”反弹,进而形成反射杂讯(Noise)的烦恼。 3.2 当传输线本身的特性阻抗(Z0)被设计者订定为28ohm时,则终端控管的接地的电阻器(Zt)也必须是28ohm,如此才能协助传输线对Z0的保持,使 整体得以稳定在28 ohm的设计数值。也唯有在此种Z0=Zt的匹配情形下,讯号的传输才会最具效率,其“讯号完整性”(Signal Integrity,为讯号品质之专用术语)也才最好。 四.特性阻抗(Characteristic Impedance) 4.1 当某讯号方波,在传输线组合体的讯号线中,以高准位(High Level)的正压讯号向前推进时,则距其最近的参考层(如接地层)中,理论上必有被该电场所感应出来的负压讯号伴随前行(等于正压讯号反向的回归路径 Return Path),如此将可完成整体性的回路(Loop)系统。该“讯号”前行中若将其飞行时间暂短加以冻结,即可想象其所遭受到来自讯号线、介质层与参考层等 所共同呈现的瞬间阻抗值(Instantanious Impedance),此即所谓的“特性阻抗”。 是故该“特性阻抗”应与讯号线之线宽(w)、线厚(t)、介质厚度(h)与介质常数(Dk)都扯上了 关系。 4.2 阻抗匹配不良的后果 由于高频讯号的“特性阻抗”(Z0)原词甚长,故一般均简称之为“阻抗”。读者千万要小心,此与低频AC交流电(60Hz)其电线 (并非传输线)中,所出现的阻抗值(Z)并不完全相同。数位系统当整条传输线的Z0都能管理妥善,而控制在某一范围内(±10﹪或 ±5﹪)者,此品质良好的传输线,将可使得杂讯减少,而误动作也可避免。 但当上述微带线中Z0的四种变数(w、t、h、 r)有任一项发生异常,例如讯号线出现缺口时,将使得原来的Z0突然上升(见上述公式中之Z0与W成反比的事实),而无法继续维持应有的稳定均匀 (Continuous)时,则其讯号的能量必然会发生部分前进,而部分却反弹反射的缺失。如此将无法避免杂讯及误动作了。例如浇花的软管突然被踩住,造 成软管两端都出现异常,正好可说明上述特性阻抗匹配不良的问题。 4.3 阻抗匹配不良造成杂讯 上述部分讯号能量的反弹,将造成原来良好品质的方波讯号,立即出现异常的变形(即发生高准位向上的Overshoot,与低准位 向下的Undershoot,以及二者后续的Ringing)。此等高频杂讯严重时还会引发误动作,而且当时脉速度愈快时杂讯愈多也愈容易出错. |
578俱樂部 發表在 痞客邦 留言(0) 人氣(149)
在很多时候,为了减少天线的占用空间,我们常常需要将天线的尺寸减少。那么怎样在天线尺寸减少的情况下,天线仍然能准确地产生谐振呢?这是我们下面讨论的问题。
一 根短于1/4波长倍数的天线是呈容性的。这是由于它不产生谐振而且其电流和电压的合成相位关系与电容性电路的相位关系很相似的缘故。那么,我们可在天线上 加一个电感来使天线产生谐振。一个偶极子天线,天线的两臂小于1/4波长,这时我们可在两臂上分别接入一个电感使天线产生谐振。这两个电感装在离天线的接 线端约几公分位置比装在臂的两端效果更好,电感的大少可通过实验的方法获得。例如,我们可通过测试天线的驻波比来获得合适的加装电感量的大少。
将一条长度为半波长的导线绕成螺旋形式,其效果和一条四分之一波长的天线相差无几,这种设计称为螺旋天线。由于这种天线很少能找到与之匹配的传输电缆,所以这种天线多用在不需要传输电缆的设备中,如手提电话、手持式无线对讲机等。
通 常我们称1/4波长的天线为鞭状天线。这种天线也是一些小型的无线收发设备用得最多的一种天线。在实际应用中由于受到体积的限制,往往天线的长度总是做成 小于1/4波长的,所以要在天线上加电感,电感的加载方式有三种:1、底部加载,2、中部加载,3、顶部加载,每一种加载方式都有其优点和缺点,从机械的 角度看,底部加载最为理想,但是这种加载方式的辐射电阻很低而且由于大多数能量是从加载线圈辐射出来,因此效率比较低。垂直架设的鞭状天线只能接收垂直极 化波,但有时我们可把1/4波长天线制成垂直和水平相结合的组合结构天线。即既可接收垂直极化波又可以接收水平极化波,在这种情况下,我们可将垂直部分的 长度做成大于1/4波长,使天线呈电感性, 然后在天线的顶部用一个十字形导线与垂直部分形成一个电容而使天线发生谐振。
578俱樂部 發表在 痞客邦 留言(0) 人氣(417)
三手菸危害大 殘留菸味也會致癌
〔編譯俞智敏、記者魏怡嘉/綜合報導〕多數人都知道吸二手菸有害健康,不少人也以為只要避開香菸煙霧就沒事了,但專家發現,其實吸菸者另外還會製造「三手菸」的危害。
煙霧消散後 毒性仍存在
578俱樂部 發表在 痞客邦 留言(0) 人氣(5)
現實生活中的義市老阿嬤&一瓶10元麥香紅茶-令人淚濕
台灣真的還是有很多人需要幫助
請慈濟
...等等的愛心團體能先將台灣照顧好在發揚愛心到國外吧
住嘉義的人要多多幫忙啊
===========================原文
============================== 578俱樂部 發表在 痞客邦 留言(0) 人氣(2)
麥克風接頭
| 圓型8Pin | 適用機型 |
 | IC-901(pin4及pin8為NC) IC-2310(pin4為TSQL) IC-2410(pin4為NC) IC-723/IC-729/IC-736 IC-721/IC-732/IC-726/IC-780 IC-970/IC-820/IC-275/IC-475/IC-1275 IC-746/IC-756/IC-760 PRO/IC-775DX II |
578俱樂部 發表在 痞客邦 留言(2) 人氣(66)